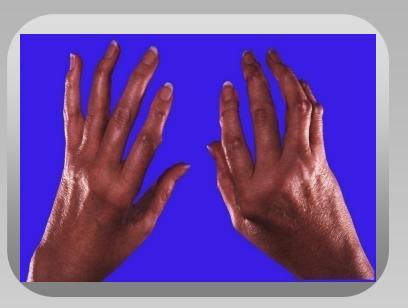
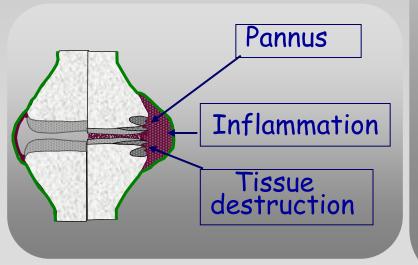
IMI SYMPOSIUM - MILAN — 26th August 2013

HOW ANTI-TNF THERAPY WAS DISCOVERED BY A PUBLIC-PRIVATE PARTNERSHIP

Prof. Sir Marc Feldmann

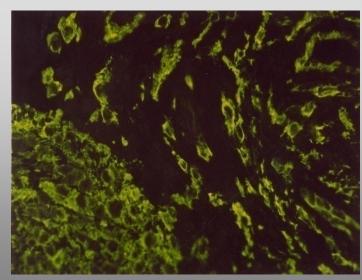




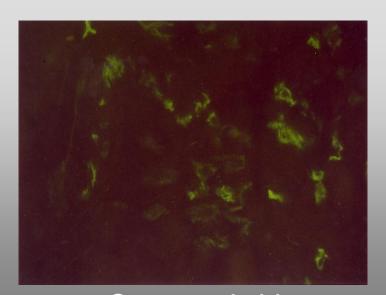
Kennedy Institute of Rheumatology Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford

RHEUMATOID ARTHRITIS (RA)

- Chronic immune inflammatory disease
- Sex: F:M 3:1, ~1%
- Progressive joint damage & disability, reduced quality of life
- Structural damage early & progressive
- 50% severely impaired by 10 yrs (not working)
- Pathology: leucocyte recruitment inflammation, tissue destruction and repair


PLAN OF TALK

- A. IDENTIFYING & VALIDATING TNF AS A THERAPEUTIC TARGET
- **B. TRANSLATING INTO CLINICAL PRACTICE**
- C. HOW WAS ANTI-TNF DISCOVERY A PUBLIC-PRIVATE PARTNERSHIP?
- D. FUTURE OF PUBLIC-PRIVATE PARTNERS e.g. STRUCTURAL GENOMICS CONSORTIUM


WHY LOOK FOR CYTOKINES IN RHEUMATOID ARTHRITIS?

Upregulation of HLA-DR in rheumatoid synovium

(Klareskog, Wigzell, Panayi, Janossy etc. 1981/82)

Rheumatoid Arthritis

Osteoarthritis

Expression of HLA-DR on cells usually negative indicates presence of inducers = cytokines

1983: A NEW HYPOTHESIS FOR AUTOIMMUNITY

Upregulation of HLA class II and antigen presentation

Londei et al., 1984, Nature

Epithelial cells expressing aberrant MHC class II determinants can present antigen to cloned human T cells.

VIRUSES

CYTOKINES & INTERFERONS

CYTOKINES

TISSUE DAMAGE

Pujol-Borrell et al., 1987, Nature

HLA class II induction in human islet cells by interferon-g plus TNF or lymphotoxin

Non tolerant autoantigen reactive

cells

CYTOKINES

Bottazzo et al, 1983, Lancet
Hypothesis: Role of aberrant
HLA-DR expression and antigen
presentation in the induction of

endocrine autoimmunity.

Autoantibodies and tissue damage

Londei et al., 1985, Science

Human T-cell clones from autoimmune thyroid glands: specific recognition of autologous thyroid cells.

MANY CYTOKINES ARE PRODUCED IN RHEUMATOID SYNOVIUM

Pro-inflammatory

e.g. IL-1, IL-6, TNFα, IL-12, IL-15, IL-17, IL-18, IFNγ, IL-2, OncoM, GM-CSF

Anti-inflammatory

IL-10, IL-1Ra, TGFβ, IL-11, IL-13

Chemokines

e.g. IL-8, MIP-1 α , MCP-1, RANTES,

ENA-78, GROα

Growth Factors

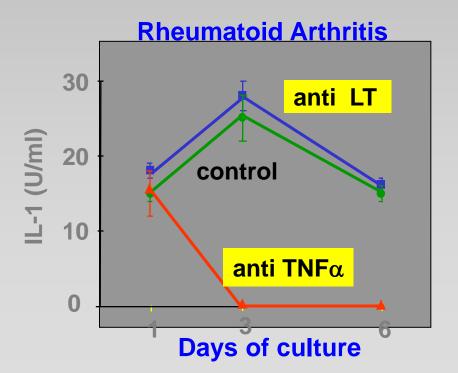
VEGF, PDGF, FGF e.g.

Tiny Maini

ARE ANY THERAPEUTIC TARGETS?

PRO-INFLAMMATORY

ANTI-INFLAMMATORY

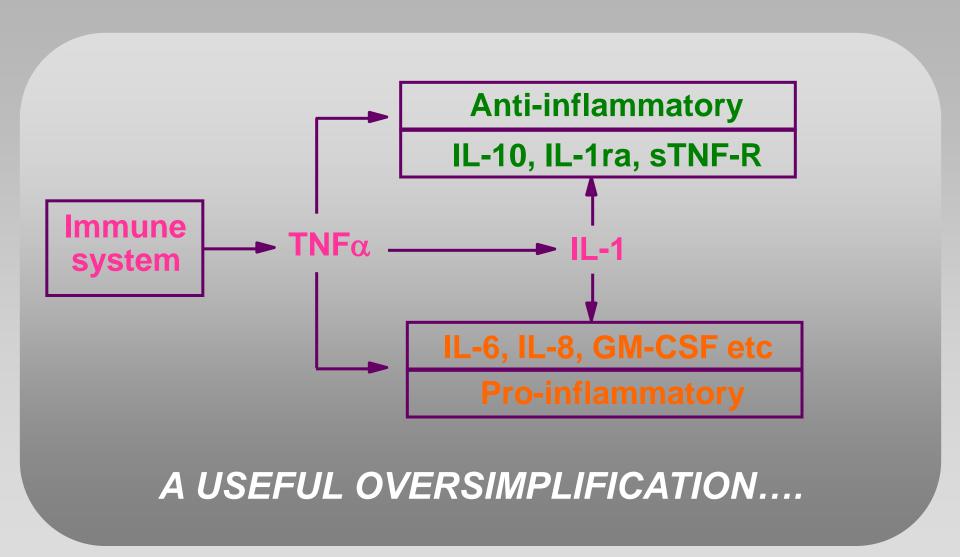


ANALYSIS OF CYTOKINE REGULATION REVEALED IMPORTANCE OF TUMOUR NECROSIS FACTOR

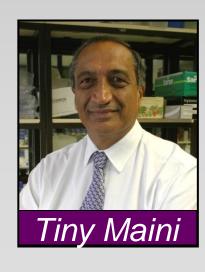
Operative sample RA synovium, cells **APPROACH** placed in 'tissue culture'

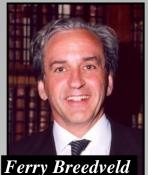
Spontaneous production of cytokines etc OBSERVATION

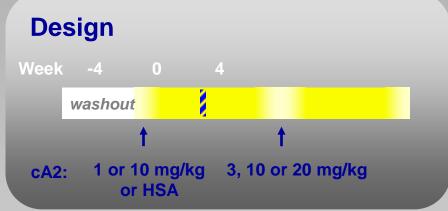
EXPERIMENT Antibody to TNF



Brennan et al (1989) Lancet ii 244-247

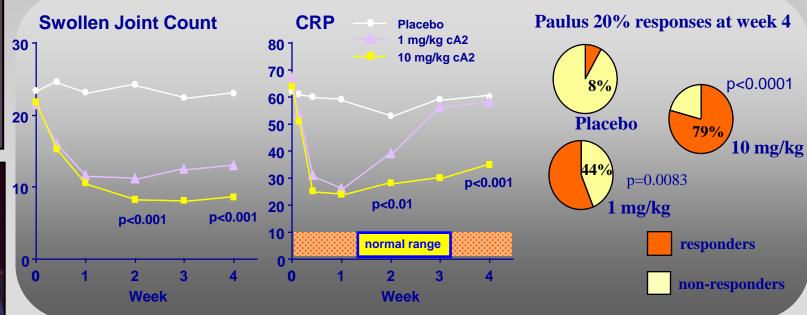

TNF DEPENDENT CYTOKINE CASCADE IN RHEUMATOID ARTHRITIS


RATIONALE FOR ANTI-TNFα THERAPY IN RHEUMATOID ARTHRITIS


1. Disregulated cytokine network in RA synovium is dependent on TNF α

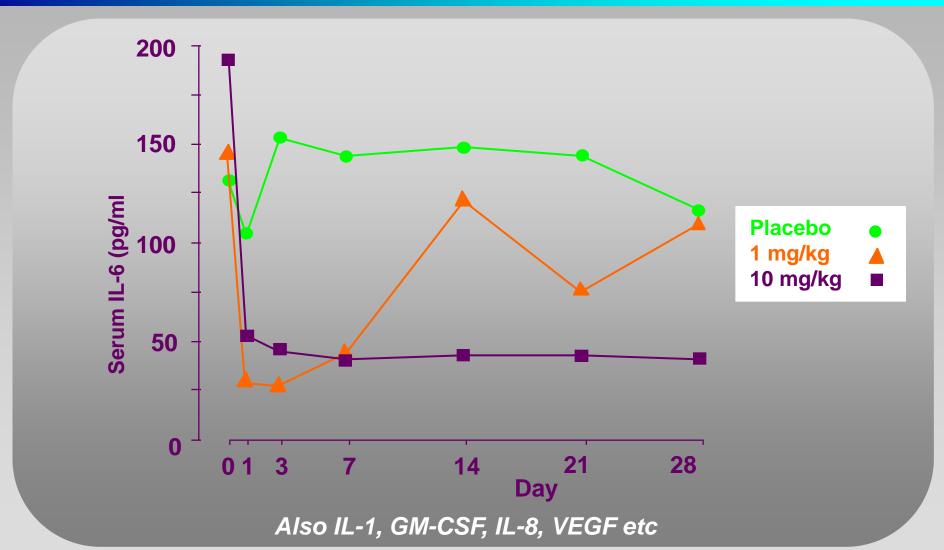
- 2. TNFα/TNF-Receptor upregulated in synovium
- 3. Animal model of RA responds very well to anti TNF α administered after disease onset.

FORMAL PROOF: RANDOMISED, PLACEBO-CONTROLLED TRIAL OF INFLIXIMAB IN RHEUMATOID ARTHRITIS

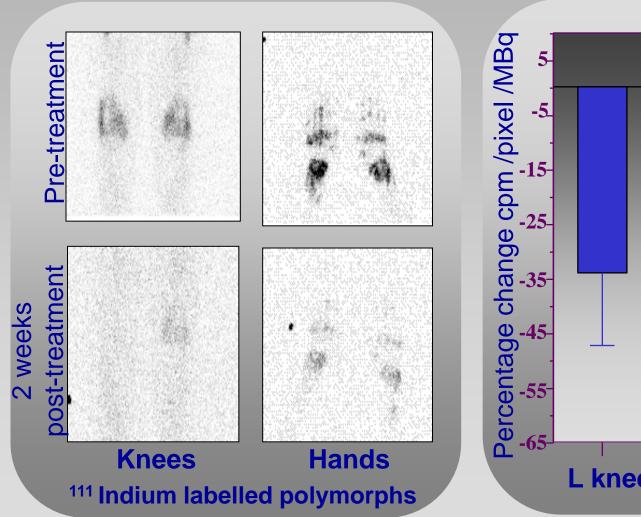

Results

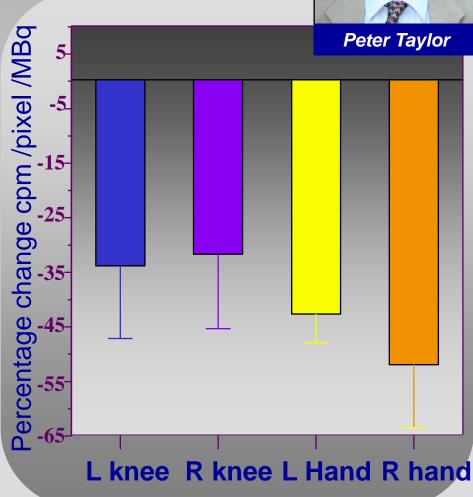
well-tolerated good clinical responses in cA2 groups dose-response relationship


Jochen Kalden


Elliott, Maini, Feldmann et al, Lancet 1994; 344: 1105-10

ENHANCED EFFICACY OF ANTI-TNF WITH METHOTREXATE: ACR 50 (50% Paulus response)


Maini RN et al. (1998) Arthritis Rheum.; 41:1552-1563.


MECHANISM OF ACTION: TNFα DEPENDENT CYTOKINE CASCADE IS OPERATIVE IN VIVO

Charles et al (1999) J Immunol; 163: 1521-28

MECHANISM OF ACTION: REDUCED LEUCOCYTE TRAFFICKING AFTER INFLIXIMAB THERAPY

Taylor et al (2000)Arthritis Rheum 43:38-47

TNF BLOCKADE IN OTHER DISEASE:

1. CLINICAL STUDIES IN MANY DISEASES

2. APPROVAL ALSO IN: Juvenile RA

Ankylosing spondylitis

Psoriatic arthritis

Psoriasis

Crohn's disease

Ulcerative colitis

3. ROUTINE USE IN: Behcet's

Amyloidosis

etc

4. FUTURE USE: Fibrosis-Dupuytren's

Post-Operative Cognitive Decline

CURRENT PROBLEMS OF ANTI-TNF THERAPY

1. Not all patients respond

2. Degree of response inadequate


3. Side effect profile Infection

4. Cost of therapy (\$20-30K)

UNEXPECTED: ACCELERATING A THERAPEUTIC REVOLUTION

1977 Kohler and Milstein: mouse Mab by fusion - problem immunogenicity

1980's Molecular engineering **Chimeric Ab** - Infliximab, Rituximab approved 1999/2002

Georges Köhler Cesar Milstein

1990's Humanization & Human Antibodies - Adalimumab **Phage Display, Engineered Mice**

Greg Winter

SALES OF MONOCLONAL ANTIBODIES

2012 5 of top 10 drugs Mabs anti-TNF biggest drug class Mab revolution driven by

- anti TNFs \$25bn
- anti cancer >\$20bn

ANTI-TNF THERAPY: PRIME EXAMPLE OF BENEFIT OF OPEN RESEARCH

- 1. Hypothesis Rationale Proof of Principle 1983-1992
- 2. Public Disclosure Sept 1992
 - Publication Dec 1993
 - Grant by Centocor did not prevent early disclosure for common good
 - Other companies joined fray post hearing of clinical success e.g. Celltech, Roche, Immunex, BASF (Abbott)

Public disclosure is a fundamental principle of science:

credit for discovery depends on disclosure

- first to disclose is discoverer (Royal Society 1660's)
- reproducibility is key to science

TIMELINE: DISCOVERY AND DEVELOPMENT OF ANTI-THE THERAPY

A	CA	1D	E	M	IC
				_	_

1983 Hypothesis

1985-90's Cytokine analysis in RA and Joints

1989 TNF dependent cytokine cascade (Brennan)

1991 Anti-TNF ameliorates mouse arthritis (Williams)

1992 Proof-of-Principle open trial London

1992/3 Re-treatment

SEPT 1992 DISCLOSURE IN ARAD, ISRAEL

DEC 1993 PUBLICATION

COMMERCIAL

1993 Randomized, placebo-controlled

1994-5 Dose ranging and combination

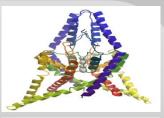
1996 Mechanism Action

1997-8 Phase III

1998/9 Registration Etanercept/Infiliximab

2002 Approval NICE

2003- Safety by patient registers


2002 ONWARDS Commercial and Patent Disputes

PUBLIC-PRIVATE PARTNERSHIPS

example in Toronto/Oxford Structural Genomics Consortium

SGC-Oxford: human proteins/ structures to facilitate therapeutics development

- World leader in human protein structural biology
 - Nearly 700 novel structures
 - 8% of all structures solved per annum

- Generating freely available novel epigenetic inhibitors
 - 10 so far
 - 5 more per annum
 - In partnership with 8 companies (GSK, Pfizer, Novartis, Lilly, Abbvie, Boehringer-Ingelheim, Janssen, Takeda)
- Now working closely with Kennedy Institute, to help discover a cure for RA

FUTURE: EVOLUTION OF SGC

- Working closely with Kennedy Institute to develop new therapeutics on new targets
 e.g. DDR1
 CCR4-CAF1
- Use of human disease cells to improve target validation
 increase throughput

 Taking new targets and drugs into proof-of-principle clinical trials

KEY POINTS

- Academic researchers far outnumber Industrial
- Certain specialized skills only in academia due to restricted resources e.g. human blood/tissue
- Avoiding needless duplication reduces costs, improves quality
- i.p. on targets difficult to sustain
- Commerical use of targets leads to new drugs with solid i.p.

10

Compound (µM)

CONCLUSIONS

 Private-Public partnerships are a very efficient way of conducting research with major human impact

ACKNOWLEDGEMENTS

FUNDING: ARUK, KTRR, MRC, Wellcome Trust, Centocor, Inc., Nuffield Foundation, etc